Ren et al (2016) Silencing miR-181a produces neuroprotection against hippocampus neuron cell apoptosis post-status epilepticus in a rat model and in children with temporal lobe epilepsy.

In this study, five microRNAs with potential relevance to epilepsy were initially chosen: miR-132, miR-146a, miR-181a, miR-34a, and miR-124. Twenty-five children who were patients with epilepsy were selected as subjects to obtain tissue samples for the study. The miRNA-181a, which represented the most increased fold-changes in clinical samples, were then selected for further function study in mouse model. The temporal lobe epilepsy (TLE) model, along with lithium-pilocarpine-induced status epilepticus (SE), was established in Sprague-Dawley rats. The antagomir of miR-181a was used to determine the role of miR-181a in cell apoptosis. Analyses were conducted to determine the expression levels of miR-181a, neuronal apoptosis in post-SE, and activated caspase-3. Evidence of significant time dependent up-regulation of miR-181a amongst post-SE rats and TLE on 24 h (4.47 ± 0.35), 7 days (4.85 ± 0.53), and 2 weeks (5.66 ± 0.64) was found. Experiments with the miR-181a antagomir showed that this particular miRNA led to the inhibition of the protein expression of caspase-3, and was up-regulated in the course of seizure-induced neuronal apoptosis.

Ren et al (2016)